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1.   INTRODUCTION 

wh^ T :    and Software (s3, has begun a study to d-'°p -^o* wh.ch can he used .„ determl„e the .«..«^ 0, numerlcal solutions ^ 

COUP.«.   ißeren.lal ^.„o. t() uncertainties in ^^ ^^ 

pZ rr0"8"   ^ firSt ya,r ^ ^ ^ ^ ^ *e Ad™^ «™ 
Pro^s Agenpy (ARPA, under ONR eontrae. N00014-n-C.«347.   niB repon 

desoru.es work performed In this effort. 

ARPA's interest in this problem has been stimulated primarily by a 

need on the part of .he defense oommunity to develop eomputatioua. models to 

deser,be oertaiu weapons effects in which non-equilibrium chemistry p,ays an 

.« role.   Por such phenomena an accurate treatment of «* Mneties of 

the chemical system requires that: 

(1)  AU of the relevant species and the Important reactions 
»*ich occur among them are includedf react'011s 

m to™"6 Vall,eS °ttbe lmi>0rta"t rate "•»Ol-t. are 

^or many app.ications there is much debate, largely based o„ intuition. about 

*h ch spemes are relevaut, w^icb reactions are important, and w*ich rate coef- 

at its   .sposal objective tools whicb can be .ed to help auswer „uestioua „f 

nr:anora,ion of ^ ~ ^——of 
A second motivation for the research is to provide tools whereby the 

m..Ury and technical commtmity cau probe la^e complex systems to uuder- 

stand more fmiy the principles by which .heir constituent parts interact.   ,„ .his 



respect, our methods are not limited to chemical systems, but may be applied to 

a wide variety of systems for which computational modeling is appropriate.   For 

definiteness, however, t^e methods will be described in the context of non- 

equilibrium chemical systems to which they have been exclusively applied to date. 

The methods which are being developed make use of the capability to 

solve the chemical kinetics problem several times for different values of the 

rate coefficients within their expected bands of uncertainty, and to interpret the 

results of these calculations in such a way as to determine the relative sensitivity 

of the results to the uncertainties in rate coefficients.   It is useful to introduce the 

concept of an "output function" which in this report will mean a number which is of 

interest calculated from the model.   Examples of output functions are: 

• One of the concentrations at a particular time. 

• A concentration maximum over all time. 

• The time at which a concentration reaches some 
threshold. 

• The maximum temperature attained by the system. 

• The radiation intensity at a particular point in space 
at a specified lime. 

An output function is regarded as a function only of the rate coefficients of the 

model, and therefore uncertainties in the rate coefficients contribute to an uncer- 

tainty in the output function. 

Since the dependence of an arbitrary output function will be, in general, 

a complicated, non-linear function of the rate coefficients, traditional analytical 

investigations are usually impossible.   The importance of the various rate coeffi- 

cients may not be determined by investigating each one separately holding the 

others fixed because of the complex interaction between reactions.   Furthermore, 

the output function may be very sensitive to the rate coefficients in a localized 

region within the uncertainty limits rather than at the upper and lower bounds of 



uncertainty.   Such regions would be missed by a sensitivity analysis which examined 

only maximum and minimum values of the rate coefficients. 

Mathematically, the problem reduces to that of investigating a non-linear 

function of many variables over a domain of its arguments.   The procedure is 

therefore characterized by two parts: 

(1) Selection of a number of points at which one will evaluate 
the function. 

(2) Determination of the relative sensitivity of the function to the 
various arguments on the basis of the function evaluations. 

The methods which have been developed prescribe a sequence of values 

of rate coefficients at which the output function is evaluated.   All of the rate coeffi- 

cients vary simultaneously along the sequence of points.   Two different approaches 

have been formulated which we shall call the Fourier method and optimization 

methods.   In the Fourier method, the sequence of rate coefficient values for the 

analysis is prescribed before any calculations of the output function are obtained, 

whereas in the optimization methods, later points in the sequence are determined 

by the values of the output function calculated at earlier points.   In the Fourier 

method only values of the output function are computed whereas some of the 

optimization methods require the calculation of various partial derivatives of 

the output function with respect to the various rate coefficients. 

The methods are designed to accommodate output functions of an arbitrarily 

lai-ge number of rate coefficients, although the cost of performing the sensitivity 

analysis increases rapidly with this number.   To date the methods have been 

applied only to the relatively simple systems described below.   The systems are 

sufficiently simple that some results of the methods can be qualitatively verified 

by intuition or hindsight.   The three systems which have been considered in some 

detail are: 



(1) Various "simulation functions" which are merely 
analytical functions of several parameters. 

(2) A chemical system describing the high temperature 
dissociation of air (five concentrations, ten 
reactions). 

(3) A chemical system describing the combustion of 
hydrogen (six concentrations, eighteen reactions). 

While these examples are extremely simple compared to the systems for 

which the methods are needed most, they do demonstrate the feasibility of the 

methods, and strongly suggest their applicability to more complex systems. 

In order to apply the methods to chemical systems, one must be able 

to solve a set of chemical rate equations.   Many techniques have been developed 

for such problems, and a code called KEM developed at S3 using the Gear algorithm 

was used.   Investigating the accuracy or efficiency of the integration technique or 

comparing various techniques was outside the scope of the research effort.   The 

KEM calculation is essentially regarded as a subroutine which gives an output 

function for a specified set of rate coefficients. 

In Sections 2.1 through 2.4 the formulation of the Fourier method is 

presented, and in Section 2.5 the results of the sensitivity analysis using this 

method for the two chemical systems described above is summarized.   In 

Section 2.6 a Monte Carlo technique for obtaining the same results is compared 

to the Fourier method. 

In Section 3.1 the optimization methods are described and in Section 3.2, 

comparisons of several optimization methods are described for a simulation func- 

tion.   In Section 3.3 an optimization method is applied to the air dissociation 

chemical system.   In Section 4 a summary of the work and proposed extensions are 

presented. 

v_ 



2.   THE   FOURIER   METHOD 

2.1 FORMULATION OF THE METHOD 

The Fourier method is an attempt to investigate certain characteristics 

of a scalar function of several var tables over a convex domain by simply evaluating 

the function at a finite set of points within the domain.   More specifically, the 

function is evaluated at a set of points along a curved line within the domain. 

While the formulation of the method is independent of the nature of the output 

function, and the variables on which it depends, the notation and phraseology of 

this discussion will reflect the context of a specific application in which the output 

function, f, is a concentration of a chemical species in an isothermal, constant 

density reacting system, and the independent variables k., 1-1, n are the rate 

constants which appear in the kinetic equations which describe the reacting system. 

The region of interest in the k-space is that spanned by the estimated uncertainties 

in the current determination of the rate constants. 

The curved line on which f is to be evaluated is defined by the single 

parameter, s, by the specification 

u. 
ki = ki e (2.1) 

and 

u. =ui sin w.s , i = 1, n      . (2.2) 

The introduction of the parameter  s provides a convenient prescrip- 

tion for varying all of the rate constants simultaneously.   By selecting a set of 

s  values, a set of values of k are obtained distributed within the n dimensional 

uncertainty domain. 



The modus operand! of the Fourier method is to seleet a set of distinct 

"input" frequencies   {w.} , one for each reaction rate being investigated.   A set 

of values of s are also chosen, and the output function f is evaluated for each 

value (for the set of {k.} specified for each value of s through Equations 

(2.1) and (2.2)).   f may thus be viewed as a function of s , 

f(s)=f(k1(s)> k2(s) ys)]     , (2.3) 

and this function is Fourier analyzed to obtain the sine and cosine amplitudes 

corresponding to various frequencies. 

2.2 QUALITATIVE INTERPRETATION OF THE FOURIER 
AMPLITUDES, INTERFERENCES, AND ALIASING 

It is convenient to assume for the moment that all the frequencies are 

incommensurate (irrational).   It is impossible to represent such frequencies 

in a digital computer, but the exercise sheds light on the qualitative interpretation 

of the amplitudes.   Furthermore, it will be assumed that f is an analytic function 

of all the rate coefficients in the domain defined by the uncertainties.   If the ampli- 

tudes corresponding to input frequency u.  and its harmonics are very small, the 

uncertainty in the ith reaction rate is unimportant in determining the uncertainty of f. 

If, on the other hand, the amplitude of w.   is large, the contribution from the uncer- 

tainty of the ith rate coefficient to the output function is large.   In Section 2.4 

the magnitude of the Fourier coefficient will be related to an average of af/9u 

over the u-space characterizing the uncertainties. 

In practice, the unique identification of a frequency with the rate coeffi- 

cient it represents may be obscured by two effects:   interferences between 

frequencies, and aliasing.   Interferences arise from the fact that incommensurate 

frequencies may not be chosen since they cannot be represented on a digital 

computer.   Commensurate frequencies have the property that they cannot be 

linearly independent with respect to integer coefficients.   If, for example, 

6 



Wj + 2 cj   - w3 , (2.4) 

the amplitudes corresponding to  a;„  will reflect not only the effects of the uncer- 
3 

tainty of k , but also k,   and k„  through the interference. 
•'3 12 

Aliasing arises whenever a finite number of points are chosen on the 

interval to evaluate the Fourier amplitude, and the effects are more serious when 

evenly spaced points are chosen.   For example, if N equally spaced points are 

chosen the amplitudes for w    will unavoidably include the amplitudes of a component 
Li 

with frequency u;     present in f(s)  which satisfies the relation 

w   = mN - w (2.5) 

where m  is an arbitrary integer. 

The current method takes the frequencies w.  to be integers and 

evaluates the output function at evenly spaced discrete values of s  on the inter- 

val  0 < s < 2ir. This choice was motivated by the goal of reducing as much as 

possible the number of points to be evaluated to obtain the Fourier amplitudes as 

shown in the next section. 

2.3 CHOICE OF FREQUENCIES AND THE METHOD OF FOURIER 
ANALYSIS 

The Fourier sine amplitude corresponding to an arbitrary frequency 

a)    associated with the Lth rate eoeificient is defined as 
"L " T 

lim —      j AT =lim — sin uT s flMs),...,^(s)]ds   ,       (2.6) 
L    "p.»« T        f LI ii 

and the cosine amplitude is defined as the same integral with the sine function 

replaced by a cosine function.   Since this integral is to be performed numerically 



and it is important to minimize the number of s points used in the integral, it 

seenu, advantageous to replace this integral over the infinite interval by one 

over a finite interval,   ^nis may be done provided only rational frequencies are 

present in the functior.  f.     For output functions which are sufficiently smooth, 

one can insure that only rational frequencies appear by specifying that the input 

frequencies themselves are rational.   It is convenient to further simplify the 

integral by the transformations in Appendix A which show that Equation (2.6) 

with rational frequencies reduces to Equation (2.7) with integer frequencies w! 

defining the k's   through Equations (2.1) and (2.2), 

2TT 

AL = ih?   J      dS Sin ^L S f (kl(S) kn(S)J      *       (2' 7) 

0 

In the remainder of this section, integer input frequencies will be assumed. 

2.3.1 Choice  of Noninterfering  Frequencies 

Since integer frequencies are to be input, various sums and differences 

of those frequencies will coincide.     The frequencies must be chosen so as to 

minimize these interferences in some sense. 

We define an interference of nth_order as a linear combination of n 

frequencies with coefficients ±1.   Thus,    w  - 2 w    is an interference of third 

order, while   ^ - Wg - 2^ - o^  is also an interference of third order, that is. 

In order to understand the meaning of the interference amplitudes in 

relation to the variation of the output function with the rate constants, it is con- 

venient to consider  f as a function of the various  u.   instead of as a function of 

the k.  through the transformation in Equation (2.1).   Assiuning that f is a 

bounded, continuous function of u    with partial derivatives of all orders in the 



region  -u. < u. < u°. it may be expanded in a Taylor series about the point 
u. =0. i = l, n. 

f(Ul Un, = fo+E(fiUi+füUf + --) 
i=l 

^7   (f..u.u+f     uu2+      ) 
^-«VIJ i j   ijj i j   ••7 

E KkVA^iij^^A 

+ t.,,,, U   U U.   +        I 
mjk   i ^"k     *••/ 

where, for example, 

f   =     92f     i_ 
U     au.9u.   21 1    J 

The function f can also be expanded in a Fourier series 

00 

f(s) = Bo + ]r ^ sin is + Bjj cos Us) . 
1=1 ' 

(2.8) 

(2.9) 

(2.10) 



Substituting  u. ■ u. sin us vto Equation  (2.8) a series is obtained, the terms 

of which contain products of various powers of trigonometric functions, i.e., 

Binr u.s sin   u.s    . (2.11) 

By using the identity 

iw. sp    iu.sq      is(pu).+qu).) 
(2.12) c e   '     = e 

and realizing that pu;.-i-qu    is integer, one observes that the two series contain 

exactly the same terms making the identification of the A^, B«   with vi rious sums 

of partial derivatives evaluated at the point u. = 0, 1 = 1, n.   Furthermore, a p th 

order interference in the Fourier series arises from terms in the Taylor expansion 

of order p or greater.   In fact, if f were linear in all u's , the only frequencies 

appearing the Fourier decomposition would be the input frequencies. 

The assumption is tacitly made that, in general, high order interferences 

(and, therefore, high order terms in u) are smal1 compared with lower order inter- 

ferences and, therefore, it will be adequate to select the input frequencies in such a 

way as to eliminate effects of interferences below, say, Mth order.   Interferences 

above Mth order will give rise to inaccuracies in the amplitudes.   From the stand- 

point of interferences, therefore, one prefers to choose frequencies consistent with 

large M, which turn out to be relatively large integers.   On the other hand, the 

number of output function evaluations necessary to evaluate the Fourier amplitudes 

of large frequencies is greater than that necessary for small frequencies.   The 

method which has been investigated to date makes use of frequencies for which 

no interferences of the order of less than five coincide with the input frequencies. 

10 



2.3,1.1    Numerical  Procedure for  Determiiing the  Frequencies 

The method currently used to determine the integer input frequencies, 

Uj, is essentially a trial and error procedure.     The object is to find a set of 

a  integers to.  such that no Lterferences of the order of four or less will coincide 

with an input frequency.   Explicitly, 

PU)j+quk + rui ■^"m^'V ^»^Mj 

where   0^,0^.0^,0^ and  w.  are input frequencies, and thr coefficients 

obey 

-4 < p, q, r, s < 4    , 
and 

|p|+|q| + |r|+|s|<4    . (2a3) 

An obvious simplification is made by chosing all odd integers for the 

input frequencies so that there are no coincidences with second order or fourth 

order interferences.   The only conditions that remain to be satisfied are that 

VV«Vüi (2.14a) 

and 

1     r    k     i        * (2.14b) 

The first step is to find an ordered set of differences such that Equa- 

tion (2.14a) is satisfied, that is, a set of d.   such that 

m 

"•-E"! m     Z—(    i (2.15) 
1=1 

11 



are distinct for 1 < m < n -1. This is done recursively, and while there exist 

many solutions for a particular n. one wishes to find the set with the minimum 

largest difference dmax 

d max 

n-1 
= Sdi (2"16) 

i=l 

which determines, in part, the largest frequency. 

The process proceeds as follows.   A table is begun for n-3, with the 

ordered set of frequencies   ^ < VV and "* 0rder0d ^ 0f differenCeS, 

d  - «  - w. , and da -  «3 - w2.     d.  are determined to be the smallest 

possible even numbers (excepting 2), i.e., 

d1 = 4       .       d2 = 6     . 

The difference d* = d+d  = 10 also occurs and is distinct from d1  and d2 . 

It is convenient to express the results in a triangular table 

4      6 

10 

To continue the process for n = 4, one chooses dg = 8 (must be distinct) and the 

d* are determined by forming the diagonal as shown below 

i  - 

4     6     8 

10   14 

18 

from upper right to lower left (i = n -1, i = 1). the element in the i th column being 

12 



the sum of the diagonal in the  i +1 st column and tho dilference appearing at the 

top of the ith column.   The successive  d.   are chosen so that no number in the 

ei Mre table is repeated. 

One is not restricted to choosing the next d.  to be the lowest unused 

even integer, but experience shows that as a general rule this choice will result 

in the lower frequencies.   Two sets of differences have been calculated and are 

presented in Tables 2.1 and 2.2.   The set of differences in Table 2.1 use the 

lowest possible unused difference to increment n, while in Table 2.2  d2 was 

taken not to be the lowest unused even number, 6, but 8.   It appears that the 

frequencies from either method are equally good, and that the results are not 

strongly dependent on the ordering of small differences.   Furthermore, since 

the even numbers between d    and d    which are omitted is relatively small, 

it appears that little improvement could be madf by finding the optional ordering 

since d would not change significantly, 
max 

The set of differences for n  ordered frequencies is the set of the first 

n - 1 differences of th«^ top row in either table.   For example, for n = 6, the 

differences in Table ^.2 are: 4, 8, 6, 10,20. 

After a set of differences are found for a particular n, the whole set 

of frequencies is detevmined by specifying the lowest frequency.   In the example 

above, with n = 6 , one assigns the differences in reverse order and assigns 

u   = 1  to obtain the frequency set:  1, 21, 31, 37, 45, 49.   The second step is to 

add to all frequencies the same integer until Equation (2.14b) is satisfied, 

u. + u, /   w, - a)/j    . (2*17) 
i       J k       ^ 

Frequencies for which no interferences of order less than 5 coincide with 

an input frequency have been calculated for n < 19  and the frequency sets are 

shown in Table 2.3. 

13 
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Table 2.3 

FREQUENCY SETS AND CORRESPONDING NUMBER OF 
POINTS AVOIDING INTERFERENCES AND 

ALIASES OF INTERFERENCES THROUGH 4th ORDER 

Dimensionality Frequency Set               Minimum Number of Points 

5 11, 21, 27, 35, 39 142 

5* 2, 42, 62, 74, 90 191 

6 1, 21, 31, 37, 45. 49 182 

6* 2, 42, 02, 74, 90, 98 231 

7 17, 39, 59, 69, 75, 83, 87 334 

8 23, 55, 77, 97, 107, 113, 
121, 125 

486 

9 19, 59, 91, 113, 133, 143 
149, 157, 161 

630 

10 26, 63, 103, 135, 157, 177, 
187, 193, 201, 205 

806 

11 41, 67, 105, 145, 177, 199, 
219, 229, 235, 243, 247 

974 

12 31, 87, 113, 151, 191, 223, 
245, 265, 275, 281, 389, 293 

1158 

13 23, 85, 141, 167, 205, 245, 1374 
277, 299, 319, 329, 335, 343, 
347 

14 87, 133, 195, 251, 277, 315, 1814 
355, 387, 409, 429, 439, 445, 
453, 457. 

15 67, 143. 189, 251, 307, 333, 2038 
371, 411, 443, 465, 485, 495, 
501. 509, 513 

16 73, 169, 245, 291, 353, 409, 2446 
435, 473, 513, 545, 567, 587, 
597, 603, 611, 615 

17 85, 145, 241, 317, 363, 425, 2734 
481, 507, 545, 585, 617, 639, 
659, 669, 675, 683, 687 

18 143, 229, 289, 385, 461, 507, 3310 
560, 625, 651, 689, 729, 761, 
783. 803. 813. 819. 827. 831 

19 149, 275, 361, 421, 517, 593, 3848 
639, 701, 757, 783, 821, 861, 
893, 915. 935, 945. 951. 959, 963 

♦These sets of 5 and 6 frequencies are not minimal, but have been used and are 
only included for completeness. They are also free of Inteferences and aliases 
of order less than 5. 
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2.3.2     Fourier Analysis  and Avoidance of Aliases 

The Fourier analysis could be performed either by evaluating f at N 

evenly spaced or unevenly spaced points on the interval (0, 27r).   Evenly spaced points 

are chosen although it is not certain that it is an optional choice.   Given evenly 

spaced points, howevc., it is convenient to replace the integral in Equation (2.7) 

by a sum.   Consider the sum 

It is shown in Appendix B that 

A* = A   + error    , (2.19) 

where the error terms called "alias amplitudes" are the amplitudes of various 

interference frequencies: 

eo 

error = / /    A,   -T Z—«    Z—<    (mN-w)     , (2.20) 
m=0       j J 

where   w   is any frequency appearing in f satisfying the relation 

mN-w. = w   , (2.21) 

where m  is an arbitrary integer.   The number  N is chosen so that Equation (2.21) 

is not satisfied for w   an interference of order less than 5 and w.   is any input 

frequency.   This number is determined by calculating for a trial  N" 

mN - w 
Li 

17 



where (^ is an input frequency, and comparing this number with each inter- 

ference frequency through fourth order.   N is the minimum value of N for 

which there are no coincidences.   The number N for the frequency sets in 

Table 2.3 is also shown. 

2.4 QUANTITATIVE INTERPRETATION OF THE FOURIER AMPLITUDES- 
ALTERNATE WEIGHT FUNCTIONS IN u SPACE 

One can view the Fourier method as being characterized by a sampling 

prescription in n-dimensional u space in addition to an analysis of the output 

function evaluated at the selected points.   The result of the method depends 

of all the points sampled, and we show below that certain Fourier amplitudes 

are related to averages of the output function with various weight functions over 

the n-dimensional u space. 

It is shown in Appendix C that if f is a polynomial function of the u's 

of order p-l, and the input integer frequency set is chosen so that no interferences 

of order less than p coincide with input frequencies, then the ono-dimensional 

integral corresponding to the sine amplitude of input frequency   ^ is equal to an 

n-dimensional integral over u space: 

AL' 

27r 

j;     I    ds f^s). u2(s) ... un(s)) sin   o^s 

(2.29.) 

ul u9 u 

/ r2 /.n 
f    , I ul f<uT V ••• u ) duj      1     du   ... I      du   -±  1     ^ n 

o        1     Jn       2 •/„ n    o      n 2    ' 0 O •'n 

(This equality does not hold for functions f of orxler higher than p-l  and an 

error term appears proportional to  (f(p,/2p-1) as shown in Appendix C.) This 
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0 

o 

0 

o 

0 

() 

Fourier amplitude is therefore equal to the  Lth component of the ccntroid, 

weighted by the function 

W(u) 

Q^ 
An alternative form of the multiple integral may be derived by integrating by 

(2.23) 

parts with respect to u   , i.e., 

u, u i  
r rn /    /      2 

ALH dV--       I    du   «?   Vl-P^l j (2.24) 
U -"i -u n ... 

1=1 Xuj 

The weight functions in these multiple integrals emphasize various regions 

of u-space.   In the form in Equation (2.22), all edges of the hypercube are 

emphasized equally, whereas in the integral in Equation (2.24), the distribution 

is uniform in uL but emphasizes the edges in the other dimensions.   Efforts 

to modify this weighting will be described below. 

The implication of Equation [2,24) is that the Fourier coefficient may be 

interpreted as an average over the whole uncertainty region of 9f/a u   , and it 

therefore represents a measure of sensitivity.   Alternatively, by analyzing inf 

instead of f one obtains the measure of sensitivity of the relative uncertainty in 

f to the uncertainty of the various rate coefficients, i.e., an average of-— . 
f 9u 

Li 

The estimated experimental uncertainty,   u°f represents the half width 

of some distribution of probable values for the reaction rate.   Therefore, one 

can argue that the sampling procedure should emphasize the region of u-space 
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. 

near the origin.   The appearance of the weight functions which emphasize the 

boundaries of the region may therefore be undesirable.   One can alter the 

weight function by choosing an alternative definition of u.   (see Equation (2. 2): 

u.^uV^inu.Sj)    , (2#25) 

and choosing  v   to be a monotonic function of sin w s . 1 i 

We will demonstrate this by finding v.   such that the weighting function 

in Equation (2.22) is given by 

n 2, o2 
rr   "u- 'ui W(u)=   1  le • (2.26) 
1=1 

Assuming that f  is a polynomial in the u's of order p-1, and using the 

same argument as those in Appendix C, one can show that 

ALS 

2TT 

^y       j     ds sin uL s ffu^s), ..,.., un(s)) 

o o u, u 1U 

I rn u n    ri 

-u, -u U
L      

x~1     l 

Setting 

dsi      1    dsj 1    -u2/u° 
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one may solve for  v.(s.) .   A solution for this equation for  -1 < v. < 1   is 

v.Cb.) - erf1   [iSm sin-l bJ .   b. > 0.    v.C-b.) - .v.(b.) %29) 

where 

b. - sin w. s. (2.30) 

and 

-7r/2 < sin"   b. < 7r/2    . 

This gives for the right side of Equation (2.27) 
2 

O O /U  v 
Ul Un I— I 
f f UL   "TT   '\ 0f    1 -   J     d^... J     dunT||e    Ui     -f^.u^...,^).    (2. 

(2erf(l))   ^o j^o UL   i=1 ^ 
1 n 

31) 

One can integrate this by parts over u     to obtain an average of 9f/9uT   with a 
Li L 

Gaussian weight function remaining over all u's  except u   , and a weight 

function in the u     dimension proportional to 

O 
u 2 u 2 
c       -(u; /«?)     rL        -(u'/u0) 

-oo 

which is also peaked near u   = 0. 
L 

Some calculations reported in the next section used this formulation of the 

Fourier method, but the results do not differ significantly from those obtained 

with the original formulation. 
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2. 5 APPLICATIONS OF THE FOURIER METHOD 

The Fourier method has been applied to various simulation functions 

(analytical functions) and to results calculated from models of two chemical 

systems.   The results for the chemical systems will be presented in this 

section. 

2.5.1      The   Nitrogen-Oxygen   (N-O)  System 

The N-0 system is modeled by the following set of chemical reactions, 

rate constants and equilibrium constants: 

02 + M ^20 + M kl-Kl 

N+M 32 2N + M VK2 

NO + M ^N + O + M        k , K 
o      3 

N   +0 iTNO + N k, K 
* 4      4 

O   + N jr NO + O k , K 
4 5       5 

and is characterized by the following rate equations, 

dc 

dt 

dc 

i = -MClM-^   02M)-k5(ClC4-4;c6C
2) 

3f-2kl(ClM-iqc2M)+k5(0lc4-r5   °5°z) 

+ k3 (v«--^v«M)-k4(v8-rv4)' 
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de 

(C3M-i^C4M) -k4(C3C2-^C5C4)' 

(C3C2-K;C4) -k£(ClC4-^C5C2)  ' 

and 
dc 

IT = " k3 (C5 M " t C4C2 M) + k4 (C3C2 " \ %^ 

k5(cic4-irV2) (2-33) 

where 

and 

C2 = 
= 10] 

C3 = :
lN2] 

V •IN] 
V ■ [NO] 

5 

M = E 
i=l 

(2.34) 

The assumption of equal reaction rates with each species acting as a third body, 

M, for reactions 1, 2, and 3 simplifies the system,   k.  are the rate constants 

for the reaction in the forward direction as written, and  K.  are the equilibrium 

constants.   The rate constants for the reverse reactions are related to k.  by the 
i    J 

relation 

23 



K..       ^ i-k * (2.35) 
i reverse 

The system was assumed to react at constant temperature, eOOOTC, and 

constant density beginning at t = 0 v/ith only N    and O    present.   The reaction 

rates and equilibrium constants used and the initial conditions assumed are 

shown in Table 2.4.   A plot of. Ae time evolution of this system is shown in 

Figure 2.1. 

This chemical system is interesting because it has in addition to the 

monotonic concentrations, the NO concentration which passes through a maxi- 
_4 

mum near t = 10     sec. 

The rate constants in Table 2.4 represent experimentally obtained rate 

coefficients, and while the uncertainties of these particular rate constants are 

not large, it was arbitrarily assumed that the experimental uncertainties for 

all the coefficients was ±2 orders of magnitude.   In the sensitivity analysis, 

values of the rate coefficients were investigated lying in the range 

w     i.0    ±4.606 ki - ki   e • i = 1, 5        . (2.36) 

Throughout the course of the study, various sets of frequencies were 

used, some were not the minimal set described earlier, but all sets bad the 

property that no interferences of the order less than 5 coincide with a fundamental. 

The most common set of frequencies used was 

(2, 42, 62, 74, 90) 

for which the lowest number of evenly spaced points which avoids aliasing of 

fourth order interferences is 191. 



Table 2.4 

PARAMETERS AND INITIAL CONDITIONS 
FOR CALCULATIONS OF THE N-0 SYSTEM 

Initial  Conditions 

—8 
[N ] = 8 x 10     moles/cc 

m 

[OJ = 2 x 10"8     " 
m 

Nominal Values  of the Rate  Coefficients 

k. = 8.5 x 10     (moles/cc)~   sec" 

k° = 3.0xl07 

2 

k° = 8.0 x 109 

k° = 9.0xl010 

4 

k° = 8.0xl011 

9 

II 

tl 

II 

II 

Equilibrium  Constants 

-4 K   = 7.8 x 10      (moles/cc) 

K2 = 1.0xl0"7 

K3 = 1.3xl0"5 " 

K>l=9.0xl0"3 

4 

Ki:=5.9xl01 

8 
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10 10 

Time (sec) 

10 

Figure 2.1 — Time evolution of the N-0 system for the conditions in 
Table 2.4. 
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Parameterizing the rate constant parameters, u by the relation 

u. = 4.606 sin OJ. s (2.37) 

and varying s  in the range  0 < s < 2ir, the concentrations of the various 

species were calculated by integrating the rate Equations (2.2) to a particular 

time for each of the 191 s values.   The 191 vülues of a concentration at a partic- 

ular time defines an output function which may be Fourier analyzed by computing 

the Fourier coefficients corresponding to the input frequencies according to formula 

N 

A
L-N  2-i   ~N~fnrj' (2*38) 

i-1 

whero M-^-J   is the output function evaluated at 8=—-   .   lie relative 

magnitudes of these amplitudes is taken to be a measure of the relative 

sensitivity of the uncertainty in the output function to uncertainty in the cor- 

responding rate coefficients. 

As an example of f(s), Figure 2.2 shows a plot of the NO concentration 
-4 

as a function of s at t = 10     sec.   The curve consists of points corresponding 

to the NO concentration for each discrete value of s, which have been connected 

by straight lines.   The Fourier coefficients of this function are presented in 

Section 2.5.1.2. 

2.5.1.1   Interpretation of Results for the  N-0 System 
at 10-6  sec 

The N-0 system was run to a time of 10~   sec and the Fourier analysis 

done on the concentrations at that time.   The results for this calculation are 

presented in Table 2.5. 
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10 

10 -9 

- in"10 
to   1U 

10 
-11 

10 -12 

Figure 2.2 - Example of an output function as a function of s .   In this 
case the output function is defined to be the concentration 
of NO at t = 10(-4) sec for the particular set of initial 
conditions in Table 2.4. 
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Table 2.5 

Q SENSITIVITY OF THE CONCENTRATIONS AT lO-6 SEC 
TO UNCERTAINTIES IN THE RATE COEFFICIENTS FOR 

THE N-O SYSTEM 

o 

o 

0 

0 

0 

. 1 

Input Frequency Corresponding Rate Coefficient Sensitivity 

[02] x 109 

2 kl -4.47 

90 k5 
-0.0244 

V4 k4 
-0.0227 

42 k2 
-0.00047 

62 k3 

            foi   x 109               - ^ _ . 

-0.00039 

2 

—    —    —    —                    JV/J     A   1U                                »    »    •   • 

kl 
8.53 

74 k4 -0.36 

90 k5 
0.018 

62 k3 
-0.029 

42 k2 

|M 1   « 1A                      _  _  _  . 

0.0027 

IN2)  x 10 

2 kl -0.389 

74 k4 
-0.386 

42 k2 
-0.0087 

»2 k8 
-0. 0039 

90 k6 

 .       fNl   v 109                  - 

-0.00103 

2 ki 
0.367 

74 k4 
0.362 

90 k6 
-0.028 

62 k3 -0.013 

42 k2 

           fMol   x 1010   .            - 

-0.011 

2 

m   m   m                 l^^J     A  XU                                 m   ^   m   » 

kl 0.412 

74 k4 0.410 

90 k6 
0.031 

42 k2 -0.0066 

62 k3 -0.0048 
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In the column labeled "Sensitivity" are listed the Fourier amplitudes 

corresponding to the rate coefficient shown.   At this early time (see Figure 2.1) 

only reaction 1 is important in the production of O from  02  and. thus, only 

the uncertainty in ^  contributes to these concentrations.   The sign of the 

amplitude may be understood by Equation (2.24) showing the amplitude proportional 

to an average of 9f/9u.   Tms. the negative sign in the sensitivity of O    to k 

means that af/a^ is negative, as one would expect.   Since k.   is small   the ' 

primary source of N is through reaction 4.   One can show that at these early 

times, when the 0.,  and  N,,  are not substantially depleted, the concentrations 

of NO and N will be proportional to the product k^.   The Fourier coeffi- 

cients of these species are therefore (approximately) symmetric in k .k . 
1    4 

It is desirable that the results are independent of the input frequencies 

Small amplitudes can depend strongly on the input frequency set through inter- 

ferences obscuring the fundamentals.   This provides a means for estimating the 

effects of interferences and aliases; for example, one can reassign the frequencies 

to the various rate constants and repeat the analysis.   If the relative sensitivity 

is invariant under permutations, the result ia reliable.   If it varies with permuta- 

tion, the result is questionable.   For the amplitudes in Table 2.5 only the smallest 

amplitudes will be unreliable.   A comparison of results under permutation is pre- 

sented below for another set of output functions. 

2.5.1.2     interpretation of Results  for the N-0 System at 
10-4 

The N-0 system with the samo initial conditions and rate constant speci- 

fication was run to t = 10"   sec. and the various concentrations were analyzed 
with the results shown in Tsble 2.6. 

Sinee the time is later, more reactions (and more unoertaintles) have 

eome into play.   If we arbitrarily ohoose a faetor of 10 to separate tee "important" 

from the "nnimpertent" rate uneertainties.   [o2] and [o] are sensitive o^y to 
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Table 2.6 

SENSITIVITY OF THE CONCENTRATION AT lO-4 SEC 
TO UNCERTAINTIES IN THE RATE COEFFICIENTS 

FOR THE N-0 SYSTEM 

i; 

c 

0 

c 

0 

r. 

:: 

Input Frequency Corresponding Rate Coefficient Sensitivity 

 r«-»!   VIA
8 

2 

' 8J                     

kl -1.1 
90 k6 -0.147 
74 k4 -0.087 
62 k3 -0.069 
42 

k2 

- fnlv 108 

0.044 

2 kl 2.17 
62 ks 0.228 
90 k6 0.164 
42 k

2 
0.078 

74 
k4 

 fN 1 x 109    - - 

-0.00146 

74 

2                     ---____ 

k4 -2.6 
2 

^ -2.8 
62 

k3 -1.0 
90 

k5 -0.70 
42 

k2 

 [N] x 109 

-0.55 

2 
^l 4.3 

74 k4 s.s 
62 

k3 s.o 
42 

k2 0.98 
90 k6 

- fNol v  in* 

0.125 

74 
k4 1.77 

90 k5 1.29 
.62 

k3 -0.91 
2 

kl 0.23 
42 k» 0.124 

^ 
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the uncertainty in k .   On the other hand, the other concentrations depend on 

several uncertainties.   It is interesting that the most direct route to produce 

N, reaction 2, is relatively unimportant in determining any concentration. 

In order to investigate possible errors in these results due to frequency 

interference effects, an additional analysis was made changing the frequencies 

assigned to the various rate coefficients.   A cyclic permutation of the frequencies 

was used which caused different interferences of order > 5 to coincide 

with the fundamentals.   The problem for which this comparison was made was the 

same as that described in Table 2.4 except that one equilibrium constant, K  , 
-1 5 

was changed to 5.9 x 10    which changed the reverse reaction rate, k_ .   The re- 
5 

suits of this calculation are presented in column II of Table 2.7.   The problem 

with modified K    was also run using the same frequency set as that used in 

Table 2.6 and the results presented in the column labled "I" so that direct compar- 

ison is possible.   Only the small amplitudes are changed significantly.   In no case 

did the sign change due to permutation although the rank based on the magnitude of 

the various small amplitudes changes occasionally. 

In Section 2.4 an alternative parameterization of k    in terms of the 

parameters was discussed which resulted in a Gaussian weight function for the 

multi-dimensional integral.   In columns III and IV the results for the same N-0 

system with modified K    are presented, with the original frequency set used in 

column in and the permuted set used in column IV,  Again, significant differences 

due to permutation occur only in the relatively small coefficients.   It is interesting 

to compare the results in columns I and m due to the different sampling of 

points.   The formulation in column I favors points near the extremes of the 

uncertainty ranges.   The general tendency for the magnitude of the amplitudes to 

be slightly smaller in column III indicates that   9f/au tends to increase with u 

in general.   There do not seem to be significant differences in the results between 

parameterizations of k^ .   Moreover, the more complex parameterization will, in 

32 
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Table 2.7 

EFFECTS OF PERMUTATION OF FREQUENCIES AND ALTERNATE 
WEIGHT FUNCTIONS ON SENSITIVITY ANALYSIS 

CONCENTRATIONS AT lO"4 SEC FOR THE N-0 SYSTEM 

Rite Cocfticicnt I U in IV 

. . .to 1 x lo" 

kl -1.14 -1.14 -1.05 -1.01 

s -0.040 -0.038 -0.0098 -0.03G 
k3 -0.04C -0.015 -0.0248 -0.047 s -0.028 -0.038 -0.0097 -0.016 

\ -0.018 

- . _ . .   [ol 

-0.020 

x  108   -. 

-0.0030 -0.030 

\ 2.27 2.28 2.08 3. OS 
k, 0.124 0.127 0.074 0.111 

h 0.105 0.097 0.031 0.075 
kt 0.045 0.069 0.015 0.034 
k4 -0.041 

 IN I 

-0.039 

X  108-- 

-P. 074 - 0.152 

S -0.569 -0,555 -0.428 -0.363 
k4 -0.4CS -0.45C -0.292 -0.246 
k6 -0.290 -0.309 -0.159 -0.146 
k. -0.069 -0.066 -0.035 -0.058 s -0.045 

       (Nl 

-0.078 

X 10»    -- 

-0.023 -0.022 

kl 1.1S 1.0» 0.836 0.693 
k« 0.853 0.838 0.504 .0.400 
kI 0.597 0.640 0.300 0.331 

".• 0.171 0.16» 0.093 0.137 
k. 0.079 

' - - - -    INOt 

0.14» 

X  1010 

0.012 0.016 

k4 T.T1 T.M T.M ».It 
k3 -3.31 -3.70 2.40 a. 87 
k6 -1.71 -1.17 4.07 3.»« 
kl 1.40 1.S8 2.06 3.33 
k« 1.06 0.721 0.395 0.310 

1        Scniltlvity with frc(|ucncy set (2, 42, 62, 74, »0) corresponding lo (k, k ). 
1            5 

2, 42) correRpondlnc to 11       Scniltlvity with 

»I k6'- 

permuted, frcqucnclc« (02, 7', 90, 

in      ScMltlvlty using alternate form. Equations (2.25, and 2.29) with frequency set 
<2, 42, 62, 74, 90). * 

W      «JT 74VitM,*'nK *"Crna,e f0^,n• l:,>u•"0^, (2-2s »nd »•») *tU> frequency set 
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general, increase the interferences (althouah It did no. .        ,   . 
svsteml    w.   ,1,      , ^ Seem t0 ,or *• N-0 
^«en,,.   we. therefore, tend tofavor the sunp.e prescription. 

The results of the sensitive anaiysis for this stapk N-O systetn 
agree «» totaition in the ^ ^ ^^ gives ^ 

»htgnuy in the res.ts due to fluency interferences is sn.an for deternTC 

•)/< 



■v K
5 

■v K6 

v K7 

k8- K8 

k9- K
9 

2.5.2   The Hydrogen-Oxygen System 

The H-0 system is modeled by the following set of chemical reactions: 

H   +Mä 2H +M K, K 
m 11 

02 + M « 2 O + M k2, K2 

OH + M3=0 + H + M        k , K, 

HO f MssH + OH + M     k,. K 
Z 4      4 

H + O    ^OH + O 
38 

O + H   S OH + H 
m 

H   + OH«H O + H 

02 + H2Ä20H 

OH + 0H5SHo0 + O 

The system was assumed U) react at constant temperature, 2000°, and 

constant density beginning with only  H    and O    present.   The reaction 
a 2 

rates and equilibrium constants used and the initial conditions assumed are shown 

in Table 2.8.   Both forward and backward reactions were considered so that 

there are 9 independent uncertainties. 

The early and late-time concentrations are shown in Figures 2.3 and 

2.4.   In Figure 2.3 the concentrations of H    and O    which are essentially 

uncharged from the initial conditions have not been shown.  At early times the 

only reactions which contribute are numbers 1, 2, and 8 since no atomic O 

or H or OH is initially present.   As more O, H, and OH become available, 

reactions 5, 6, and 7 become dominant which results in the sharp decrease 

in oxygen and hydrogen molecules and the correspondingly sharp increase of 
-3 

other species at t~10     sec.   Finally, the slower reactions equilibrate 

slowly until a relative steady state is reached at about t = 10~3 sec.   This 

steady state is not true equilibrium in the sense that reactions 2, 5, and 8 

are still quite far from equilibrium, but further relaxation to equilibrium is 

extremely slow. 
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Table 2.8 

PARAMETERS AND INITIAL CONDITIONS FOR 
CALCULATIONS OF THE H-O SYSTEM 

Initial   Conditions; 

[H2] = 8.0 x 10"9 moles/cc [02] = 4.0 x 10"9 moles/cc 

Nominal Values  of the Rate  Coefficients; 

k° = 5.78 x 10   (moles/cc)~   sec-1   k^ = 4.0 x 1013 (moles/cc)"1 sec"1 

k° = 4.47xl03 " kj = 1.51xl013 

kg = 1.03xl05 " kg = 2.20xl06 

k° = 6.79xl05 " k° = 1.6xl014 

k° = l."23xl012 

0 
ti 

Equilibrium  Constants; 

K   = 1.59 x 10'     moles/cc K   = 1.4 
■^ 6 

K2 = 2.69xl0"12     " K   =9.76 

Kg = 1.14 x 10"11     " Kg = 2.02 

K   =1.63xl0"12     •• KQ = 6.76 

Ke = 2.37xl0"1 

o 

tt 

tt 

it 
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,-15 

Figure 2.3 — Time evolution of the H-0 system for the conditions in 
Table 2.8. t = lO-11- 10-6 8ec. 
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Figure 2.4 — Time evolution of the H-0 system for the conditions 
in Table 2. 8, t = lO"4 - 10 seconds. 
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o 

o 

The rate constants shown in Table 2.8 are taken to be the "best g-ucss" 

values and one order of magnitude uncertainty in each rate constant was 

assumed in order to demonstrate the technique.   The frequencies for the 

analysis were taken tobe the minimal set, 

W ■ (19. 59. 91. 113. 133. 143. 149, 157. 161) 

630 evenly spaced points were taken on the  s  interval 

0<s< 27r 

to evaluate the Fourier amplitudes.   The analysis was run on the concentrations 

at one early time and one late time. 

2.5.2.1 Interpretation of Results for the H-O System at 10"8 RRP 

The results for the sensitivity analysis for t = 10"8 sec are shown in 

Table 2. 9.   At this veiy early time, the  H2  and 02  concentrations have not 

varied from their initial values so that the sensitivity analysis showed their 

Fourier amplitudes to be very small, due only to roundoff in the analysis. 

The relative sensitivites of the other species, however, reflect the importance 

of the various reactions and the uncertainties in their rate constants.   In the 

case of H. reaction 1  is the prime contributor and, therefore, its rate 

coefficient is crucial in determining the accuracy of [H] .   kg and k     are also 

important since reactions 7 and 8 together produce H .   The sensitivities of 

the two reactions are the same since, at early times these two reactions yield 

[H]*k7k8    . 

and since the uncertainties u° = u° . the results are symmetric in k    and k   . 

This is also the most efficient path to produce HgO by at early timel. and    8 

since there is a one to one correspondence between  [H] and [H O]. the 

sensitivity of these concentrations to k    and k    are the same. 
• 8 

This system has not been run with a different frequency set to deduce 

the errors from interferences.   It is estimated, however, for this set of results 



Table 2.9 

SENSITIVITY OF THE CONCENTRATIONS AT 10"8 SEC 
TO UNCERTAINTIES IN THE RATE COEFFICIENTS 

FOR THE H-0 SYSTEM 

Rate Coefficient Sensitivity Rate Coefficient Sensitivity 

IH2] 10,1- 
Insensitive to uncertainties 

in any rate constant. 

.11 

Insensitive to uncertainties 
in any rate constant. 

[H]  x 10 

4.67 

0.202 

0.202 

0.010 

0.0023 

0.00165 

8. OxlO-5 

4. IxlO-5 

-3.OxlO-5 

18 

[O]   x  10 
20 

[OH]   x  10 

5.9 

-0.00203 

1.76x10" 

1.14x10" 

1.61x10" 

9.73x10 -5 

7.08x10 

-7.43x10 

3.13x10 

-6 

k2 1.79 

k6 -0.016 

kl 
0.0065 

k6 
0.0065 

k3 2.25x10"6 

k4 -1.95X10"6 

k9 7.87X10"6 

k« 1.20xl0"6 

k7 
-8.46X10"7 

_ [H Ol   x  10 20  in,jUj   « * v 

k8 
2.03 

k7 
2.03 

k5 
0.121 

k6 
0.0066 

k4 8.35x10"4 

kl 
-6.34xl0"4 

k9 
4.22x10"4 

k3 
-2.81X10"4 

k2 
1.33xl0~4 
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that no credence should be given sensitivities smaller than 1 percent of the 

maximum for that species. 

2.5.2.2   Interpretation of Results  for the  H-0  System at 
lO-3  sec 

-3 At t - 10     sec the system is about to make dramatic changes.   Thereforo, 

as the rate constants are shifted, one would expect the concentrations to change 
-3 dramatically at t = 10     sec.   This is indeed the case, and one finds the various 

sensitivity results listed in Table 2.10.   As predicted, reactions 5, 6, and 7 seem 

to be most important overall, with the early-time reactions 1, 2, and 8 of con- 

siderably less importance.   It is clear that the controlling reactions affect all 

the species about equally which is to be expected, since all species appear in 

those reactions. 

In running the H-0 system to late times, difficulties were encountered 

with the equation integration package.   The timesteps became excessively short, 

and often the input error criterion had to be modified in order to obtain a timely 

solution.   The difficulties pointed up the need to investigate more closely methods 

for integrating the kinetic equations more economically. 

2.6        COMPARISON OF THE FOURIER METHOD WITH OTHER METHODS 
FOR EVALUATING THE MULTIPLE INTEGRALS 

It is possible to view the Fourier method as a means for approximately 

evaluating the multiple integral of an output function over u space.   If incom- 

mensurate frequencies could be used, the evaluation would be exact.   By using 

integer frequencies, the number of points required to determine the Fourier 

amplitude is finite, but an error is introduced because of the frequency inter- 

ferences. 

One way of obtaining the Fourier amplitudes without the troublesome inter- 

ferences would be to evaluate the n-dimensional integral to which the amplitudes 
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Table 2.10 

SENSITIVITY OF THE CONCENTRATIONS AT 10~3 SEC 
TO UNCERTAINTIES IN THE RATE COEFFICIENTS 

FOR THE H-0 SYSTEM 

Rate Coefficient Sensitivity Rate Coefficient Sensitivity 

  (",) x 109  
-  1") 

g 2 K 108 . - .   . . 
k
5 

-3.71 
k5 1.92 

k7 -0.346 
"* 1.92 

k6 -0.313 k 
6 0.122 

k8 -0.172 k« 0.102 

"2 -0.108 
k2 0.061 

k4 -0,101 
k9 0.0466 

s -0.0905 
k4 0.0439 

kl -0.0491 
kl 0.0176 

S 0.4119 
k3 -0.00318 

 (O 1 x 109  
(O)   x 

10 2 10  

•       k5 -1.77 
k5 8.77 

k7 -0.153 
k7 0.420 

k6 -0.089 
kl 0.164 

k8 -0.070 
k6 0.162 

k2 -0.047 
k9 0.145 

k4 -0.047 
k2 0.116 

k9 -0.044 
k8 0.115 

kl -0.031 
k4 0.10 

k3 0.0091 
"3 -0.061 

- - - ion] x IO1- .... fn2o) 9 
x  10   - ... 

k6 4.63 
k6 2.52 

k7 0.281 
k7 0.237 

k6 0.190 
k6 0.142 

k8 
0.135 "e 0.114 

k. 0.116 
k4 0.114 

k2 0.115 
k2 0.0718 

\ 0.0964 
k9 0.0614 

k. 0.0876 
kl 0.0358 

S .0.03S9 
k3 -0.00851 
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correspond (see Equation 2£ 22) by an alternate method.   One method which was 

tried was based on simple Monte Carlo integration.   In this section we compare 

the Fourier method and the corresponding Monte Carlo calculations.   Another 

equiva^'ent form was investigated, namely integral ^  in Appendix C which is an 

n-dimensional  s  integration equal to the u integral transformed by the relations 

Ui = Sina,iS • * = 1. * (2.39) 

when the frequencies w.  are those associated with the Fourier method.   The 

function used in these comparisons was the "simulation function," Equation (3.3) 
with 

C1H = 0.1   ,   0.(0) = ! 

k. =i 

t = 1.5 

o 
,   u. =0.5    ,    1-1, 6 

The results for the Fourier sine amplitudes of the input frequencies are 

denoted Aj, 1 ■ 1, 6 ,   The frequencies were 

(1, 21, 31. 37, 45, 49)    , 

201 points were used on the interval (0. 2n) (no aliases interference of order less 

than 5).   The amplitudes were run for 5 different permutations of frequencies, 

each of which defined a different path through the space.   The results are shown 

in Table 2.11.   The quantity in the column labeled "Ä" is the average ampli- 

tude, and the "Maximum Error" is 

A-A 
maximum 
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and serves as an estimate of the errors introduced by interferences. 

The same one-dimensional integral was performed by Monte Carlo 

selecting the  s points on the interval (0, 2TT) at ranJom. and calculating an 

approximate integral 

N 

IL = i^i J] sin Vi ftki(£V W1 

i=l 

The results for the amplitudes for successive samples of 200 points is shown in 

Table 2.12.   These results show that the number of points required by this 

Monte Carlo procedure to give statistical accuracy is much greater than the 

number required in the Fourier analysis.   Stated another way, for 200 points, 

the degree of accuracy of the Fourier method far surpasses that of the Monte 

Carlo integration. 

Another method was to select six values of u at random for each func- 

tion evaluation, and approximate the integral by 

The results are shown in Table 2.13 for two successive sets of 200 points. 

While the error is much less in Ihis case than in performing the one-dimensional 

Monte Carlo integral, the expected errors in a particular 200 point sample still 

greatly exceeds the errors in the Fourier sampling. 

Monte Carlo was also used to evaluate the six-dimensional integral 

(Ig of Appendix C) in s space choosing six independent values of s to insert 

separately into the integral.   The results were comparable to those in Table 2.13 

and will not be given. 
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3.   OPTIMIZATION OF AN OUTPUT  FUNCTION 
WITH  RESPECT   TO  VARIATIONS OF  THE 

RATE   COEFFICIENTS 

An alternate method for investigating the variation of the calculated con- 

centrations with variations of the rate constants was investigated in which the 

concentrations were optimized over the multi-dimensional domain of rate con- 

stants bounded by the maximum and minimum estimated uncertainties. 

Several methods for optimizing functions of many variables have been 

well automated and are operational on the S3 computer.  A code CUK was 

written ufcich solves the problem by the method of steepest ascents.   This 

method proceeds by choosing the direction of the maximum gradient from a 

given starting point, and following that line to an extremum.   The process is 

repeated by taking this as a new starting point, constructing a new line, following 

it to its extremum. and so forth until a relative extremum in the many dimensional 

space is found.   A refinement to this technique using a sophisticated algorithm due 

to Daviden     and modified by Fletcher and Powell(2> and Stewart^ is embodied 

in subroutines DMIN1 and DMIN2.   In the Daviden algorithm, the search for a 

minimum proceeds along a line which does not exactly coincide with the gradient. 

At each step a new direction is chosen dependent not only on the gradient at the 

new starting point, but also on the previous history of the search.   For some 

functions this procedure is much more efficient than one using the gradient 

directiy.   DMIN1 requires a subroutine which computes the gradient, which is 

essentially that described below, see Section 3.1.   DMIN2 estimates the gradient 

by repeated evaluation of the fonction.   Neither DMIN1 nor DMIN2 are capable of 

handling constraints, and an extension of Davidon's method to include constraints 

has been programmed into a subroutine called KEELE. 
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3.1        FORMULATION OF THE GRADIENTS FOR THE METHOD OF 
STEEPEST ASCENTS 

Both DMIN1 and CUK require the gradient of the functions to be extremized. 

For the special class of output functions consisting of species concentrations as 

a function of time, the gradient may be integrated along with the rate equations to 

obtain gradients at any particular time. 

A set of rate equations may be formally written 

^t'is rhr0J). 
where the index j  label (separately) reactions in both forward and backward 

directions.   L(j) is the set of indices corresponding to the reactant concentra- 

tions on the destruction side of the jth equation,   e?   is the stoichiometric coeffi- 

cient of C.  if C    is produced in the jth reaction, is equal to -1 if C.  is 
ii — i 

destroyed by the reaction, and is equal to  0  if C.  does not appear in the 

equation or appears with the same stoichiometric coefficient on both sides of 

the reaction.   m(j,jf) is the stoichiometric coefficient of C„  on the destruction 

side of the equation. 

The partial derivatives of the ith concentration with respect to the pth 

rate coefficient   C      are found by differentiating Equation (3.1) with respect to k 
'    ip P 

ac.        „   8C 

"at 
i£= JL   1 _CP       I   1    ,r xm(P^) 

at ak   -€i     11  (Cr 
ifL(p) 

i      k x x 

p     i€L(p*) 

(3.2) 
n n 

+ 

1=1 lt}=l ' ^L^ 
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p* labels the reverse of reaction p , and the other symbols are defined after 

Equation (3.1).     The second term on the right side of Equation (3.2) makes use 

of the assumption that k „/k    is a constant over the uncertainty space (i. e., 

there is no uncertainty in the equilibrium constant).   This set of equations for 

p = 1, n forms a linear set of equations in  C.    which can be integrated to 

obtain  C     (t) by the same Gear algorithm used for integrating the basic 
i.P 

rate equations.   A version of the KEM code has been written to accomplish this. 

3.2       TEST CALCULATIONS 

Two types of test calculations were used to investigate the various methods 

of optimization.   First, the properties of a "simulation function" were investigated 

to determine the consistency and relative economy of the various methods. 

Secondly, the CUK method was applied to the nitrogen-oxygen (N-O) chemical 

system. 

(4) 
A "simulation function" was suggested by Professor Shuler     which is not 

the solution to any known set of kinetic equations, but which possesses some of 

the same characteristics as kinetic solutions.   The function is given by 

-k t   -1 

C^t)» <C1(0)C1(«)[ci(0)+ jc^co) - C^j e   1 J 

no 2      "^3* 
C^WC^k^t   e 

C^0)+C^(0)k3k2t
2 

C4(0)c2(0)k4t3(l-e       )e -V        \kl+k2   / 

c4(0)c5(0) + c*(0) k4k5t
2 + C2(0) c^k^t3 

(3.3) 

C (t) is a function of six rate constants as well as the time.   The following substi- 

tution was made. 
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*.> 
u. 

1      ' (3.4) 

so that the function is viewed as a function of u.   in the range 

■^^i       "       i = 1'6    ' (3.5) 

Thetixne t was fixed at 1.5 so that only the functional dependence in .   remains. 

It is desirable to confine the domain of interest in u space to be contained 

Within some n-dimensional box.   Sine, some of the methods are designed for 

unconstrained systems, the above function was multiplied by an importance func- 

tion to form the "associated simulation function" 

n    2, o2 y-u./u. 
i=l   1   l 

p(u) = e x n (t) 
1 (3.6) 

where ^(t)  is given by Equation (3.3). 

A comparison was made between the four methods:  CUK. DMIN1   DMIN2 

and KEELE.   ^e output ftmction is the associated simulation function described ' 

above, with the parameters shown in Table 3.1. 

Table 3.1 

PARAMETERS FOR THE OPTIMIZATION METHOD COMPARISON 

Rate coefficient nominal values:      k. = 1, t » 1   6 

Rate coefficient uncertainties: u0 = l, i = i 6 

t = 1.5 

C.(0) = l   .   i = x, 6 

c1H = o.i 
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The results using the four methods are shown in Table 3.2; all using comparable 
-5 

minimum step sizes of 10    .   These results show that, for this function of six 

variables, the methods appear to be consistent. 

Two starting points were tried, and for this output function, the same 

end point is reached. For complicated output functions, one would not expect 

the same end point for different starting points. 

The cost of these calculations are all proportional to both number of func- 

tion evaluations and the number of derivative evaluations.   The relative economy 

of the CUK method over the more sophisticated methods led us to concentrate our 

further investigation on this method.   For functions more complicated than the 

above, it is anticipated that the other methods might well be superior. 

The CUK code was used on the associated simulation function for different 

parameters, and with different variations in the method.   In the sets of results 

shown below, the parameters entering the associated simulation function were 

those given in Table 3.3. 

Table 3.3 

PARAMETERS ENTERING THE ASSOCIATED SIMULATION 
FUNCTION IN TEST PROBLEMS BELOW 

Rate coefficients nominal       k   =1, k° = 2, k0 = 3, 
values: 

0.(0) = !, 1 = 1,6, 

0^«) = 0.1 

t=1.5 

*:-4.k°.B,k».6 



Table 3.2 

RESULTS OF COMPARISON OF OPTIMIZATION METHODS 
FOR THE ASSOCIATED SIMULATION FUNCTION 

PartA: Minimum  from  Starting Point 

u°  -  0.1,   i  = 1,6 

Function 
Value 

CUK 

0.356846 

1.11918 

0.914977 

1.45013 

0.679556 

1.31851 

1.12414 

DMIN1 

0.356843 

1.11994 

0.909268 

1.44725 

0.669602 

1.32621 

1.12282 

DMIN2 

1.12342 

0.914298 

1.41251 

0.670227 

1.31683 

1.12951 

KEELE 

0.356755      0.356866 

1.ÜP39 

0.915617 

1.45692 

0.677832 

1.32631 

1.12901 

u. 

ur 

u. 

ur 

0.112598 

-0.088856 

0.371653 

-0.386315 

0.276503 

0.117014 

0.113276 

-0.095116 

0.369666 

-0.401071 

0.282322 

0.115841 

0.116388 

■0.089598 

0.345370 

-0.400138 

0.275225 

0.121783 

0.112784 

-0.088157 

0.376326 

-0.388856 

0.282404 

0.121343 

No. of Function Calls 46 115+ 184 49 

No. of Gradient Calls 10 25 24 

\ 
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Table 3.2 (Contd) 

Part B: Minimum  from  Starting Point 

u° =-0.1.   1-1,6 

Function 
Value 

CUK 

1.12464 

0.916838 

1.44718 

0.670045 

1.29726 

1.12978 

DMIN1 CMIN2 KEELE 

0.356845 0.356839 0.356755      0.356841 

1.13471 

0.924054 

1.44315 

0.669190 

1.30969 

1.14590 

1.12343 

0.914097 

1.41256 

0.670133 

1.31687 

1.12904 

1.12512 

0.919816 

1.45030 

0.673464 

1.31326 

1.13609 

u. 

u. 

u. 

u. 

u. 

u 

0.117460 

-0.086825 

0.369616 

0.400410 

0.260252 

0.122021 

0.126376 

-0.078985 

0.366831 

-0.401689 

0.269792 

0.136189 

0.116384 

-0.089819 

0.345401 

-0.400280 

0.275258 

0.121367 

0.117894 

-0.083581 

0.371773 

-0.395321 

0.272509 

0.127595 

No. of Function Calls 40 604 284 51 

No. of Gradient Calls 100 25 
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The results for both maximization and minimization of the associated 

simulation function are shown in Table 3.4.   In Table 3.4, Part A, the maximum 

uncertainty in the rate coefficients is  u0 = 0. 5, in Part B the uncertainty is 

assumed to be u   = 1. 
i 

3.2.1   Discussion  of  Table   3.4 

Two methods were used to search for the maximum values of the function, 

constrained and unconstrained. In the constrained method, values of ü were not 

allowed to be outside the box, 

Ui=±U°     ' (3.7) 

When a gradient indicated that larger values of the function occurred outside this 

box, the direction of search was taken along the boundary.   The results for the 

constrained and unconstrained maxima are therefore different for cases in which 

the maximum lies outside the box. 

Each optimum of the function was evaluated for 2 or 3 starting points 

designated by the row labeled initial point.   The columns labeled ±0.1 denote the 

initial point 

VV*0'1    '     i = 1' 6     • (3.8) 

The column denoted "corner" represents an initial point »vith coordinates given by 

the footnote asterisk,.   The rows denoted k.  are the 6 values of the rate coeffi- 

cients specifying the optimal values, and the u./u?   are then coordinates in 

u space normalized to a unit hypercube.   In Part A, for example, the maximum 

unconstrained value of the associated simulation function is found at 

u5/u° = -1.4    , 
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Table 3.4 

RESULTS OF OPTIMIZATION OF THE 
ASSOCIATED SIMULATION FUNCTION (ASF) 

PartA: Rate  Constant  Uncertainties 

u     =0.5,   i  =  1,6 

MINtMUM MAXIMUM 

Const ralne d (Jncons trained 

Initial Point 0.1 -0.1 Corner* 0.1 -0.1 Corner«• 0.1 Corner** 

kl 
1.33B502 1.336492 1.33656S 0.042881 0.942877 0.942912 . 0.958178 0.986023 

ka 1.994806 1.994808 1.69480r, 2.038608 2.038510 2.038437 2.038124 2.54384 

s 3.732761 3.732694 S.7330,'i8 1.819592 1.819592 1.819592 1.699020 2.84773 

k4 
3.867460 3.867470 3.867411 4.777388 4.777428 4.777113 4.720191 6.716707 

k6 
5.012121 6.012122 6.012120 4.998960 4.698960 4.999181 4.999231 2.47980 

k6 
6.000996 6.000998 6.000997 6.699934 6.999934 6.999980 5.999951 4.99648 

«A0 0.68 0.58 0.68 -0.12 -0.12 -0.12 -0.087 -0.028 

VU2 -0.004 -0.007 -0.007 0.04 0.04 0.04 0.004 0.480 

V-3 0.44 0.44 0.44 -1.0 - -1.0 -1.0 .1.11 -0.1 

•X -0.067 -0.069 -0.070 0.35 0.35 0.36 0.33 0.71 

v; 1,005 0.004 0.00 -C,0005 -0.0004 -0.0005 -0.003 -1.4 

U6/U6 
0.001 -0.001 -0.001 -S.00005 0.00002 -0.00004 0.00002 -0.367 

Optimal Value 
of the ASM 

0.130960 0.130968 0.130968 0.173318 0.173318 0.173318 0.174365 0.161049 

No. of Function 
Evaluations 

102 76 5S 63 87 es 61 68 

No. of Derivative 
Evaluations 

30 20 16 16 14 16 16 14 

«Initial Polnti u/u° = (0.9. -0. 8, 0.9, -0.9, 0.6, -0.6) **Inltial Pointi u/u°-(-0.&, 0.9, -0.7, 0.95, -0.96, -0.5) 



Table 3.4 (Contd) 

Part B: Rate  Constant  Uncertaintiei 
o 

u 1.   I  =1,   6 

Initial Point 

MINIMUM 

0,1 

ul 

U2 

Optimal Value 
of the ASM 

1.732245 

1.988241 

4.172935 

3.814059 

5.067699 

6.006362 

Corner* 

1.732198 

1.988255 

4.172686 

3.814118 

5.067709 

6.006398 

MAXIMUM 

Unconstrained 

0.1 

0.972464 

2.204691 

1.103638 

7.507727 

4.897028 

5.999815 

Corner*' 

0.891551 

3.334084 

2.881929 

10,87313 

1.839397 

3.641476 

0.65 

-0.005 

0.33 

-0.047 

0.014 

0.002 

0.55 

-0.005 

0.33 

-0.047 

0.014 

0.002 

-0.028 

0.097 

1.0 

0.63 

-0.0006 

-0.00002 

Evalua- 
tions 

No. of 
Deriva- A8=10"s 

tlve As=10-2 

Evaluations 

0.126953 

56 
32 

15 
9 

0.126953 

69 

19 

-0.11 

0.51 

-0.04 

1.0 

-1.0 

-0.49 

0.352646 

61 
36 

12 
10 

1.25303 

45 

10 
7 

•Initial Point:   ü-(0.9i, -0.95, 0.95, -0.95, 0.7, -0.9) 
J 

Constrained 

0.1 

0.984629 

2.228403 

0.873297 

7.151887 

4.998524 

5.999911 

Corner*• 

-0.015 

0.11 

-1.23 

0.58 

-0.0004 

-0.0001 

0.885884 

2.814347 

2.93961 

14.42193 

1.49980 

3.740973 

0.376890 

73 

-0.12 

0.34 

-0.02 

1.28 

-1.2 

-0.47 

1.49207 

30 

39 

••Initial Point: u (-0.6, 0.9, -0.7. 0.95, -0.95, -0.8) 



a point which is outside the uncertainty box, while in the constrained case, u 

lies on the surface of the box.   u   = -u0 . 
3        3 

In Part A, with the estimated uncertainty u0 = 0.5, 1 = 1, 6 the optimum 

function value is found to be independent of the initial point of the search for 

both the minimum and constrained maximum cases, but the unconstrained case 

finds different maxima.   In Part B, even the maximum found in the constrained 

search is dependent on the initial point.   This emphasizes the fact that such a 

search finds only a relative optimum which may be path dependent. 

Finally, some words will be said about the numbers of function and deriva- 

tive evaluations necessary to reach the optimum.   These numbers depend 

strongly on the complexity of the output function.   The method used by the CUK 

code is to select a direction based on a gradient calculation, and then search 

along that path with ever increasing distance until a functional optimum is 

found (or, if the search is constrained, until a boundary is reached).   At this 

point, another gradient is calculated and the search proceeds along the new direc- 

tion.   The fact that the number of gradient calculations is small compared with 

the number of functional evaluations indicates that the gradient varies relatively 

slowly in the directions of search.   Consistent with this observation are the last 

two rows in Table 3.4(B) which show that increasing the minimum step size 
-5 -2 

from 10    to 10    (therefore increasing the average step size) reduces the 

number of function evaluations more than it reduces the number of gradient cal- 

culations. 

An interesting feature of the associated simulation function is that the 

hyper-corner in which the maximum occurs is the reflection through the origin 

of the hyper-corner where the minimum is found (there are slight deviations 

from this principle in the case of u. in Part A for both the maximum and 
o 

minimum.   In each case, however, the values of u,. are small so that difference 
6 

of hyper-corner could be the effect of round-off error.) 



3.3       RESULTS FOR THE N-0 CHEMICAL SYSTEM 

The N-O system investigated was the same as that for which test calcula- 

tions were run using the Fourier method.   The set of reactions chosen was: 

0+MÄ20 + M 
\' Kl 

NL+M522N+M 
2 \- K2 

NO + MiTN + O + M k3- K3 

N- + O ^ NO + N \. K4 

O   + N ;r NO + N 
\' K5 

The forward rate constants, k., and the equilibrium constants K.  were chosen 

as described in Table 2.4, with the exception that K_  was set equal to 0.59 
5 

instead of 59.0.   The uncertainty in each rate constant was assumed to be a 
±2 

factor  10   , that is, the rate coefficients were assumed to lie in the range 

o   "i (3.9) k. = k: e 
i      1 

-4.606< u. <4.6Ü6 

The concentrations were initialized as shown in Table 3.5, and the system 
-4 allowed to react isothermally at constant density until t = 10     sec when the 

various species reach concentrations which were considered as output functions 

depending on the various rate coefficient uncertainties.   The CUK code was used 

which is strictly a steepest ascents calculation.   The hyperplanes defining the 

boundaries according to Equation (3.10) were taken to absolute constraints not to 

be violated. 

The results of the optimization is summarized in Table 3.5 for the maximum 

of each concentration, and in Table 3.6 for the minimum of each concentration. 



G 
Table 3.5 

RESULTS FOR THE MAXIMUM CONCENTRATIONS 
FOR THE   N-O SYSTEM 

i. 

0 

Ü 

Initial Maximum Number of Number of       Boundary 
Concentration      Concentration Function Gradient Statos 

(moles/cm3)       (moles/cm3) Evaluations Evaluations 
after 10"4 sec 

0z 
o 

2. 

0 

00 x lO"8 1.98 

4.00 

xlO-8 

xlO-8 

22 

13 

9 

5 + - -- + 

N
2 

N 

8. 

0 

00 x lO"8 8.00 

8.58 

xlO"8 

xlO"8 

22 

17 

9 

10 + - ++ + 

NO 0 4.70 xlO"9 38 16 M --M- 

Table3.6 

RESULTS FOR THE MINIMUM CONCENTRATIONS 
FOR THE   N-0 SYSTEM 

Initial Minimum Number of Number of       Boundary 
Concentration      Concentration Function Gradient Status 
(moles/cm3)       (moles/cm3) Evaluations Evaluations 

after lO-4 sec 

02 2.00xl0"8 2.34 x 10-12 16 9 + +++- 

O C 9.12 xlO-11 17 9 —+. 

N2 S.OOxlO"8 3.69 x 10"8 25 10 +-++ + 

N 0 1.77xl0"15 14 7  + 

NO 0 5.51 xlO-13 18 10 + + 
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In both tables, the columns need no further explanation except for the 

column designated "Boundary Status."  The codes f, -, M have a meaning best 

described by example.   The boundary status of N in Table 3.5 is+- + + + . 

This means k , k0, k^, and k_ equal to their upper experimental uncertainty 
13     4 B 

limit and k    equals to its lower experimental uncertainty limit will produce 
A 

the maximum concentration of N at lo"   sec.   If an M  appears in the i th position 

from the left, the optimal value of the concentration occurred for a value of the 

ith rate coefficient between its upper and lower experimental uncertainties. 

Only in the case of the maximization of NO did the extremum lie at an interior 

point for a particular rate constant. 

Another observation may be made that the hyper -corner in which the 

maximum is found is not the reflection of that for the minimum of the same 

species.   In this way this chemical system is more complicated than the simula- 

tion function considered earlier.   This may be understood in terms of the 

chemical kinetics by consideration of an example, the  N concentration.   In 

Table 3.6, the N concentration is shown to be minimized by maximizing kg . 

Referring to the reaction set on page 59 this is reasonable since reaction 5 

contributes strongly in the forward direction since, by minimizing k^ , there 

is an abundance of O    present.   On the other hand, Table 3.5 also shows that 
m 

the  N concentrations will be maximized by maximizing kg .   In this case,   ^ 

is large so that there is an abundance of O atoms, and the reverse of reaction 5 

dominates.   Therefore, to increase kc  increases the  N concentration.   It is 
5 

questionable if results such as this could have be«.n reached by chemical intuition 

alone, and we feel this exchange demonstrates a useful application of the method. 

In addition to the information presented in Tables 3.5 and 3.6, one also 

has values of the gradients and output function at various points along a path from 

an initial point and the final optimum which can be useful and give a measure of the 

relative sensitivity of the output function to uncertainties in the various rate 
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coefficients.   The method has the characteristic that the sampling of points 

emphasizes either largo values or small values rf a particular output function 

which might be suitable for problems in which either values of a concentration 

above or below some threshold is of interest, for example, in the investiga- 

tion of the onset of radar blackout in the atmosphere as a function of various 

rate coefficients. 

The optimization methods have the disadvantage that a separate analysis 

must be made for each output function of interest, whereas, in the Fourier method. 

the sensitivity of all species in the system may be investigated by using the same   ' 
sample of points. 

The cost of the optimization procedure (for one concentration) is less 

than the Fourier method in the sense that fewer function evaluations are necessary. 

This effect is more than balanced, however, by the increased cost required to 

evaluate the gradients since, for n-independent reaction rates the cost of per- 

forming the time integration of the derivatives is approximately n2 times greater 

than a calculation in which no gradients are computed.   It may be that use of an 

optimization method such as DMIN2 or the SIMPLEX method(5) which replaces the 

gradient calculations by differences of previously calculated output functions may 

present a more economical alternative 
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4.   SUMMARY AND   FUTURE   EFFORTS 

Q Two types of methods have been developed to investigate the sensitivity 

of ihe results of complex calculations to uncertainties in the parameters entering 

the calculations, the Fourier method, and the optimization metiiods.   For a particular 

output function, the Fourier method provides a sensitivity number for each 

independent reaction rate coefficient whose magnitude characterizes the relative 

importance of the uncertainty in that coefficient in determining the uncertainty in 

the output function.   This relative importance is an average importance over 

O the many dimensional domain of the reaction rates consistent with the experimental 

uncertainty in each rate.   The optimization methods investigate both the value of 

the output function and its gradient with respect to the rate coefficients.   The 

latter is a measure of local sensitivity at a point.   The uncertainty space is not 

sampled uniformly, but regions with either large or small values of the output 

function are treated preferentially.   These two methods have application to 

distinctly different classes of problems. 

For the real chemical systems considered so far, there are some features 

of the sensitivity results that can be predicted before the calculation.   There are 

0 others that can not be easily predicted beforehand, but can be verified qualitatively 

by hindsight. The quantitative results (which of two important rate uncertainties 

is most important) are ofteh extremely hard to predict on intuitive grounds alone, 

and demonstrate the utility of the methods. 

At present we feel that both methods are useful in answering different 

questions about certain systems.   Since the Fourier method is least understood, 

and appears to be most promising from the standpoint of economy, our immediate 

plans are to concentrate on this method.   First priority is to apply the method to a 
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wider class of non-equilibrium chemistry problems, in order to get a feel for the 

method.   It will be advantageous for large systems (depending on more than, say, 

20 independent reactions) to learn ways to split the system up into certain indepen- 

dent pieces for separate analysis.   Another interesting question which will be 

addressed is to investigate alternate ways to calculate the multiple integral form 

of the Fourier coefficient using quadrature rules.   This would eliminate the trouble- 

some effects of interferences between frequencies. 

There are improved optimization techniques which do not require the 

evaluation of the gradient, which may make these methods less expensive and, 

therefore, more useful.   With these methods there is always the problem that an 

optimum is a local optimum and a global optimum requires many calculations 

beginning from different initial points.   The selection of initial points is again a 

sampling problem, and it appears that considerable experience would be necessary 

to adequately investigate the uncertainly domain. 

Another area for study is the selection of integration routines which will 

give results more economically.   This is important since, for large systems, 

the calculation of the output function is the major expense.   Perhaps accuracy 

could be sacrificed for speed in a sensitivity analysis. 

Finally, the methods should be applied to a wide range of problems outside 

the area of non-equilibrium chemistry, for example, in the area of social systems 

modeling, or quality control modeling to determine their applicability to such 
systems. 
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Appendix A 

EQUIVALENCE  OF RATIONAL AND 
INTEGER  FREQUENCIES 

Consider 

T 

I-ltoi J   dsg(sina,1s «m w 8> ..., si >       (AA) 

0 

where only a finite number.   M. of rational frequencies are present.   By rational 
frequencies we mean that they may be represented by 

where pj and qj are relatively prime Integers. 

Let 

-n^ 
M 

and 

q w = wj , 

Aen q ^ - wj  is an integer> ^  Equation (A ^ may ^ rewritten 

T 

Wm   i  J    ds g (sino;'s/q sin a,^ s/i)   . ( 

0 

But since g is a periodic function of s-= s/q with period 2. since all the 
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w'  are integers, this gives 

ds'gCsin^s' sin w^s')   . (A.3) HC 
The infinite integral in Equation (A.l) with rational frequencies is therefore equal 

to a finite integral with integer frequencies. 
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Appendix B 

EXTRACTION OF   FOURIER AMPLITUDES 
BY A   FINITE  SUM 

The purpose of this Appendix is to show that one can evaluate the Fourier 

amplitudes of a periodic function f(s) by the following prescription 

i\ N   Jsin(2Tm^)j 

I    =N   Z_J . f f(2iT I) + alias amplitudes (B.l) 
V i=1(cos(2im^)j 

where An  is defined in Equation (2.7), and B    is the corresponding cosine ampli- 

tude,   n is an integer >0 and f(2Tr) = f(0).   We shall proverthis relation for 

An, the sine amplitudes only, although the proof can be directly extended to the 

cosine amplitudes, B  .   Consider 

N 
A;SN5ZSin27raNf(27rN) <B-2) 

i=l 

where 

f(s) = B   +   7      (A    sin ms + B    cos ms)  . o     ^^      m m 
m=l 

Substituting f into A* one must evaluate a sum of terms n 

N 
A* 2    V^T   / 27rini/N , m      .. 
A;. m = N   2-r m(e ) Am 8in(2™^/N) . (B. 3) 
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XM 

A*       = . 1 Re V* L2trl(n+nM/N _   27Ti(n-m)i/N 
n,m N / ^ [ m (B.4) 

-^ 

2Tri(n+m)   , 2TTi(n-in) 
e -1 e -J    iA 

Le -1     e 

where we have used the formula 

N 

2m(n+m)/N      "   2Tri(n-m)/N   J    m ^'^ hi 

E 
i=l 

6        N 
rx =(r   -l)/(r-l) 

In the brackets each term vanishes unless the denominator vanishes since 

e        = 1 for p integer.   Only special values of m relative to n will there- 

fore contribute to A*, and those are, for the first and second terms in the 

bracket, respectively, 

m + n = qN     condition 1 , (B. 6) 
and 

|m-n|=qN   condition 2  , (B.7) 

where q is an integer > 0.   For q = 0, only m = n contributes.   For   q>l, 

let the special values of m  satisfying conditions 1 and 2 be denoted m*(q, n) 

and m*(q,n), respectively.   Then, for N>n, m*(q,n) wül be distinct from 

mgfa.11) (n = 0 is an expection which is uninteresting), and every such m*, and 

m* will contribute to A*.   Therefore z n 

A;=An + Jl[AmJ(q.n)+AmJ(q.n)]   ' ^ 
q=l 
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The sum in the above expression may be viewed as an error term to the evalua- 

tion A . The amplitudes in the error term are called "alias amplitudes" since 

an amplitude for frequency m*(q, n) masquarades as one for frequency n . For 

N-*co, the error terms become small. 

As discussed in Section 2.3.2 the input frequencies are chosen to be 

odd integers which have no interactions of order <5 which coincide with 

the input frequencies.   Since the alias frequencies are equivalent to other 

frequencies, it is consistent to choose  N sufficiently great that there are no 

aliases of interferences of order <5 which coincide with input frequencies either. 

Thus,   N is chosen by trial and error so that condition 1 is satisfied, 

wi+üm^qN P'V 

where   u.   is an input frequency and  OJ     are all input frequencies and inter- 
i m 

ferences of order less than or equal to 4.   One can show that a sufficient 

condition to satisfy Equations (B. 6) and (B. 7) is 

N>4w   „      ,       N , (B.10) max even x        ' 

but by trial-and-error values of N slightly smaller than 4 co may be found. 
max 
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Appendix C 

A   THEOREM 

In this Appendix we present a theorem which relates the Fourier amplitude 

of a function to an average of the output function over the n-dimensional space 

spanned by the rate coefficient uncertainties. 

Theorem. Assume  f(u , u , ..., u ) is a polynomial of order p-1 in the 
i/n 

u's, over the domain 

-U1^U1^U1 

o o 
-u  ^ u   < u 

n^  n-   n 

Assume also a set of integer input frequencies   w., i = 1, which are chosen 

so that no interferences of the order of less than p coincide with any input 

frequency.   Then the Fourier amplitude corresponding to the Lth input frequency 

satisfies the following relation: 

2ir 

2jr J AL ~ 2^   I     dS Sin V ^V*0, U2(S) ' * * Un(S)) 

o o o u. u u 
r 1 /.2 -n .. 

iff f ui  f<ui' •••un) 

0 0 ''O O     Ö      O J       t      ,  Q
2 

-Ul -U2 A UL   U^^-VV 
i = l 

(Cl) 
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where 

u (s) - u   sin u. s    . 
Proof; l i l 

For convenience the two integrals in Equation (C. 1) will be referred to as  I 

and I , respectively.   The first step is to transform I    by the transformation 

u = u   sin dj s i = 1, n (C.2) 

then 2ir 2n 2-n 

I2=-1lJ      d8lJ      dS2 J     ^n^VL^W'-'V^     (C-3) 

^ ^^     0 0 0 

2I3     • 

The next step is to show that I   ■ I 
o X 

Since f is a polynomial of degree p-1, we can expand it in a Maclaurin 

series 

f<ul Un) = fo+I]fiUi+ YJ 
fiJUiUJ + - (C-4) 

i i.J 
where the last term contains a product of p-1 u's.   Substituting Equation (C.2) 

for the u., i = 1, n, one obtains a series containing products of the form 

ni n2 sin     (w1si)8in     (WgSg)   .... (C.5) 

These terms may be expanded using the relation 

(^Vij^Vi8! t 

Performing the  s    integrations one ti.us obtains 
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where all terms of f which are differentiated an odd number of time in u 

and an even number of times in all other u's contribute through derivatives 

of order p-1. 

If one makes the substitution 

o   . 
u. = u, sin u. 8 ,n „. i      i i (C.7) 

into the Equation (C.4) and substitutes that into ^ one finds terms of the form 

nl n2 
sin   (w1s)sin(W2 s)  ... (a8) 

which is slightly different from Equation (C. 5) in that the same s appears in 

each term in the product.   The res^dt is that when the expansion is made to 

reduce such a tenii to one linear In the sines or cosines, frequencies appear 

which are interferences of the input frequencies.   In feet, since f is of 

order p-1  in the u's, interference frequencies which are of order p-1 

will appear in the spectrum of f.   But the frequency set was hypothesized to 

be free of p-1 th order interferences coinciding with an input frequency such as 

wL.   Therefore, only the terms in f which are of odd order in u    and even 

order in all other u's  will contribute.   But that is the same set of terms as 

appears in Ig .   Therefore, 

h'h • (c.9) 



la the case that f is of higher order than p-1  in the u's, one can 

estimate the error between ^  and  Ig.   (I   =1   independent of frequencies.)  For 

definiteness, choose p = 5, which characterize the frequency sets used in the 

applications in Section 2, and assmue  f has a fifth order component 

f     0        U.tLUaU    u 
jkümq   J x if m q (C10) 

with j, k, i, m, q all different.   Substituting according to Equation (C. 2) into f 

in I3 gives zero contribution to I   .   On the other hand, if one substitutes for 

this fifth order term into L   according to Equation (C. 7), one can expand the 

product (C. 10) to be 

jkimq 
16 

sin (Wj + Wg +a)3 + w4+ w5)s - sin^ + w
2 + ^ + w4 -w )s 

+ sin(w1 + w
2 + w3 - w4 - w5)s - sin (c^ + w2 + Wg -u,^ + a;5)s 

+ ... (C.ll) 

If there exist frequencies  u.,a>,..,,aj    such that one of the 16 interference j    k q 
frequencies in Equation (C, 11) coincides with CüT , the contribution from the fifth 

order term will contribute to I .   Since the order of this contribution is 

ocf^/a^) . 

we can write for a general function f, 
< 

^ = i2 + cxf^VP-1*)   . (C.12) 
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